Uncertainty, Stochastics &
Sensitivity Analysis

Nathaniel Osgood
MIT 15.879

April 11, 2012



Types of Sensitivity Analyses

e Variables involved * Type of variation
— One-way — Single alternative values
— Multi-way — Monte Carlo analyses:

Draws from probability

* Type of component
yb P distributions (many types of

being varied

variations)

— Parameter sensitivity e Ere f iati
analysis: Parameter quency ot variation
values — Static (parameter retains

_ Structural sensitivity value all through simulation)
analysis: Examine effects — Ongoing change: Stochastic
of model structure on process
results e Accomplished via Monte-Carlo

analyses

» Key for DES & ABM



Model Uncertainty

* Here, we are frequently examining the impact of
changing
— Our assumptions about “how the system works”
— Our decision of how to abstract the system behaviour

e Structural sensitivity analyses

— Vary structure of model & see impact on

e Results
 Tradeoffs between choices

— Frequently recalibrate the model in this process

* Here, we are considering uncertainty about how the
current state is mapped to the next state



Predictor-Corrector Methods:
Dealing with an Incomplete Model

 Some approaches (e.g. Kalman filter, Particle
Filter) are motivated by awareness that
models are incomplete

* Such approaches try to adjust model state
estimates on an ongoing basis,
— Given uncertainty about model predictions

— New observations

* Assumption here is that the error in the model
is defined by some probability distribution



Static Uncertainty
Sensitivity Analyses

In variation, one can seek to investigate different
— Assumptions

— Policies

Same relative or absolute uncertainty in different

parameters may have hugely different effect on
outcomes or decisions

Help identify parameters/initial states that strongly

affect

— Key model results
— Choice between policies
We place more emphasis in parameter estimation &

interventions into parameters exhibiting high
sensitivity



Spider Diagram
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Systematic Examination of Policies
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Add New “Parameters Variation” Experiment
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Setting Ranges for Parameter Variation
Can Handle 1-Way or (Orthogonal) Multi-Way
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SeNnSITIvVIty eEXploration In ANyLOgIC
Performing 1 Way Sensitivity (for now...)
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Monte Carlo Analyses in AnylLogic:
Specifying Distributions for Parameters
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Monte Carlo Output
After Some Runs
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This experiment performs multiple (100) runs of the Agent Based SIR Model with SAME (default) parameter values.

As the model is essentially stochastic, each run resulls in a different output. In the chart above we display the summary of
simulation runs (namely, the dynamics ofthe Infectious population size) in the form of the 2D histogram. The color intensity
ofa chart spot corresponds to the size ofthe corresponding 20 histogram hin.
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Monte Carlo Output
After All Runs
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This experiment performs multiple (100) runs of the Agent Based SIR Model with SAME (default) parameter values.

As the model is essentially stochastic, each run resulls in a different output. In the chart abhove we display the summary of
simulation runs (namely, the dynamics ofthe Infectious population size) in the form of the 20 histogram. The color intensity
of a chart spot corresponds to the size of the corresponding 2D histogram hin.
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Sensitivity in Initial States

Frequently we don’t know the exact state of the
system at a certain point in time

A very useful type of sensitivity analysis is to vary
the initial model state

In Aggregate models, this can be accomplished by

— Varying the number of people in the stock via a
parameter to adjust

In an agent-based model, state has far larger
dimensionality

— Can modify different numbers of people with
characteristic, location of people with characteristic, etc.



Imposing a Probability Distribution
Monte Carlo Analysis

 We feed in probability distributions to reflect our
uncertainty about one or more parameters
 The model is run many, many times (realizations)

— For each realization, the model uses a different draw
from those probability distribution

 What emerges is resulting probability
distribution for model outputs



Multi-Way Sensitivity Analyses

 When examining the results of changing
multiple variables, need to consider how
multiple variables vary together

* |f this covariation reflects dependence on
some underlying factor, may be able to
simulate uncertainty in underlying factor



